
Combinational Logic Trainer Lab Manual   

Copyright 2009 Enoch Hwang 10/26/2009 Page 1 of 36 

Combinational Logic Trainer 

Lab Manual 
 

 

 

Control
Signals

Status
Signals

MUX

'0'

Data
Inputs

Data
Outputs

Datapath

ALU

Register
ff

Output
LogicNext-

state
Logic

Control
Inputs

Control
Outputs

State
Memory

Register

Control Unit

ff

Microprocessor

 

 

 

 



Combinational Logic Trainer Lab Manual   

Copyright 2009 Enoch Hwang 10/26/2009 Page 2 of 36 

Contents 
 
Combinational Logic Trainer .................................................................................................................................1 
1 Digital Logic Circuits ............................................................................................................................................3 

1.1 Introduction to Microprocessors....................................................................................................................3 
1.2 Combinational and Sequential Circuit Analogy ............................................................................................4 
1.3 Basic Logic Gates ..........................................................................................................................................4 
1.4 Digital Circuits ..............................................................................................................................................6 
1.5 Identifying Combinational Circuits ...............................................................................................................6 
1.6 Analysis of Combinational Circuits...............................................................................................................7 

2 Labs .......................................................................................................................................................................9 
2.1 Lab 1: Basic Gates, Lights, Action!.............................................................................................................10 
2.2 Lab 2: Designing Combinational Circuits ...................................................................................................14 
2.3 Lab 3: Multiplexers......................................................................................................................................17 
2.4 Lab 4: Decoders...........................................................................................................................................19 
2.5 Lab 5: Comparators .....................................................................................................................................21 
2.6 Lab 6: Full Adder.........................................................................................................................................23 
2.7 Lab 7: 4-bit Adder .......................................................................................................................................25 
2.8 Lab 8: 4-bit Adder/Subtractor......................................................................................................................27 
2.9 Lab 9: 2-bit Arithmetic and Logic Unit (ALU) ...........................................................................................30 
2.10 Lab 10: BCD to 7-segment LED Decoder ...................................................................................................33 

 



Combinational Logic Trainer Lab Manual   

Copyright 2009 Enoch Hwang 10/26/2009 Page 3 of 36 

1 Digital Logic Circuits 

1.1 Introduction to Microprocessors 

Whether you like it or not, microprocessors (also known as microcontrollers) control many aspects of our lives 
today – either directly or indirectly. In the morning, a microcontroller inside your alarm clock wakes you up, and 
another microcontroller adjusts the temperature in your coffee pot and alerts you when your coffee is ready. When 
you turn on the TV for the morning news, it is a microcontroller that controls the operation of the TV such as 
adjusting the volume and changing the channel. A microcontroller opens your garage door, and another inside your 
car releases your anti-lock break when you drive your car out. At the traffic light, a microcontroller senses the flow 
of traffic and turns on (hopefully) the green light for you when you reach the intersection. You stop by a gas station 
and a microcontroller reads and accepts your credit card, and let you pump your gas. When you walk up to your 
office building, a sensor senses your presence and informs a microcontroller to open the glass door for you. You 
press button eight inside the elevator, and a microprocessor controls the elevator to take you up to the 8th floor. 
During lunch break, you stop by a gift shop to buy a musical birthday card for your love one and find out that the 
birthday song is being generated by a microprocessor that looks like a dried-up pressed-down piece of gum inside 
the card. Well, I can continue on with this list of things that are controlled by microprocessors, but I think you got 
the idea and I better stop before you get bored. Oh, one last example, do you know that at the heart of your computer 
(either a PC or a Mac) is a microprocessor too? That’s right the Intel Duo Core® CPU inside a PC is a general-
purpose microprocessor. 

So you see, microprocessors are at the heart of all “smart” devices, whether they be electronic devices or 
otherwise, and their smartness comes as a direct result of the decisions and controls that microprocessors make. In 
this three part award-winning series on microprocessor design training kits, you will learn how to design and 
actually implement real working custom microprocessors. Designing and building microprocessors may sound very 
complicated, but don’t let that scare you, because it is not really all that difficult to understand the basic principles of 
how microprocessors are designed. After you have learned the materials presented in these labs, you will have the 
basic knowledge of how microprocessors are designed, and be able to design and implement your very own custom 
microcontrollers! 

There are generally two types of microprocessors: general-purpose microprocessors and dedicated 
microprocessors. General-purpose microprocessors, such as the Intel Pentium® CPU, can perform different tasks 
under the control of software instructions. General-purpose microprocessors are used in all personal computers. 

Dedicated microprocessors, also known as application-specific integrated circuits (ASICs), on the other 
hand, are designed to perform just one specific task. For example, inside your cell phone, there is a dedicated 
microprocessor that controls its entire operation. The embedded microprocessor inside the cell phone does nothing 
else but controls the operation of the phone. Dedicated microprocessors are therefore usually much smaller, and not 
as complex as general-purpose microprocessors. Although the small dedicated microprocessors are not as powerful 
as the general-purpose microprocessors, they are being sold and used in a lot more places than the powerful general-
purpose microprocessors that are used in personal computers. 

The electronic circuitry inside a microprocessor is called a digital logic circuit or just digital circuit. As 
opposed to an analog circuit where the main components consist of discrete resistors, capacitors, inductors, and 
transistors, the main components in a digital circuit consist of the AND, OR, and NOT logic gates. From these three 
basic logic gates, the most powerful computer can be made. Furthermore, these logic gates are built using 
transistors—the fundamental building blocks for all digital logic circuits. Transistors are just electronic binary 
switches that can be turned on or off. The two binary values, 0 and 1, are used to represent the on and off states of a 
transistor. So instead of having to deal with different voltages and currents as in analog circuits, digital circuits only 
deal with the two abstract values of 0 and 1. Hence, it is usually easier to design digital circuits than analog circuits. 

Every digital logic circuit is categorized as either a combinational circuit or a sequential circuit. A 
microprocessor circuit is composed of many different combinational circuits and many different sequential circuits 
as shown in the drawing on the front cover of this manual. In part I of this three part series on microprocessor design 
training kits you will learn how to design combinational circuits. In part II you will learn how to design sequential 
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circuits. And finally in part III you will learn how to put these different combinational and sequential circuits 
together to make a real working microprocessor. 

1.2 Combinational and Sequential Circuit Analogy 

A simple analogy of the difference between a combinational circuit and a sequential circuit is the combination 
lock that we are familiar with. There are actually two different types of combination locks as shown in Figure 1. For 
the lock in Figure 1 (a), you just turn the three number dials in any order you like to the correct number and the lock 
will open. For the lock in Figure 1 (b), you also have three numbers that you need to turn to, but you need to turn to 
these three numbers in the correct sequence. If you turn to these three numbers in the wrong sequence the lock will 
not open even if you have the numbers correct. The lock in (a) is like a combinational circuit where the order in 
which the inputs are entered into the circuit does not matter, whereas, a sequential circuit is like the lock in (b) 
where the sequence of the inputs does matter. 

 

   
 (a) (b) 

Figure 1: Two types of combination locks: (a) the order in which you enter the numbers does not matter, (b) the 
order in which you enter the numbers does matter. 

So, a combinational circuit is one where the output of the circuit (like opening the lock) is dependent only on 
the current inputs to the circuit, but not dependent on the order in which these inputs are entered. One example of a 
combinational circuit is the adder circuit for adding two numbers. The adder takes two numbers for its inputs. With 
these two input numbers, it evaluates the sum of these two numbers and outputs the result. It doesn’t matter which 
input number you enter first as long as you enter both numbers and the adder will output the sum. 

Examples of combinational circuits used inside a microprocessor circuit include adders, multiplexers, decoders, 
arithmetic and logic unit (ALU), and comparators. Some of these combinational components are highlighted in blue 
in the drawing on the front cover of this manual. In this courseware you will learn about these and many other 
combinational circuits. 

1.3 Basic Logic Gates 

All digital circuits are implemented with logic gates. The three basic logic gates are the AND gate, the OR gate 
and the NOT gate. These logic gates functions similar to binary switches and the only signals that they deal with are 
0’s and 1’s. An analogy for the operation of the AND gate is like connecting two binary switches together in series 
as shown in Figure 2 (a). In order for a signal to go from the input to the output, both switches have to be turned on. 
On the other hand the OR gate is like connecting two binary switches together in parallel as shown in Figure 2 (b). 
In order for a signal to go from the input to the output, either one or both of the switches needs to be turned on. 

switch 1 switch 2

input output
 

(a) 

switch 1

outputinput switch 2

 

(b) 

Figure 2: The connection of two binary switches: (a) in series; (b) in parallel. 
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Using the convention of a 1 meaning “on” and a 0 meaning “off”1, the AND gate will output a 1 when both 
inputs have a 1 (i.e., both switches are on); otherwise the output will be a 0. Whereas, the OR gate will output a 1 
when either one or both of its inputs has a 1 (i.e., either one or both of the switches is on); otherwise the output will 
be a 0. The NOT gate simply inverts the value at its input. So if the input is a 0, the output will be a 1, and vice 
versa. The logic symbols for the AND, OR and NOT gates together with their functional truth tables are shown in 
Figure 3. In these truth tables, x and y are the inputs to the gate and F is the output from the gate. 
 

y

x
F

 y

x
F

 
x F

 

x y F 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

(a) 

x y F 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

(b) 

X F 
0 1 
1 0 

 

(c) 

Figure 3: The logic symbols and functional truth tables for: (a) AND gate; (b) OR gate; (c) NOT gate. In these truth 
tables, x and y are the inputs and F is the output. 

Any digital circuits, no matter how complex they may be, can be built using these three basic gates. However, 
there are several other gates derived from the AND, OR and NOT gates that are also used frequently in digital 
circuits. They are the NAND gate, NOR gate, XOR gate and XNOR gate. Their logic symbols and functional truth 
tables are shown in Figure 4. 
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x y F 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

(a) 

x y F 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

(b) 

x y F 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

(c) 

x y F 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

(d) 

Figure 4: The logic symbols and functional truth tables for: (a) NAND gate; (b) NOR gate; (c) XOR gate; (d) 
XNOR gate. In these truth tables, x and y are the inputs and F is the output. 

Furthermore, in addition to having just two inputs for all of the above mentioned gates (except for the NOT 
gate), they can have more than two inputs. Theoretically, there is no upper limit to the maximum number of inputs to 
these gates. In practice, however, they have only 2-, 3-, 4-, 6- and 8- inputs. Regardless of the number of inputs they 
have, they always have only one output. Figure 5 shows the symbols for some of these gates. 

 

 

(a) 

 

(b) 
 

(c) 

Figure 5: The logic symbols for: (a) 3-input OR gate; (b) 4-input AND gate; (c) 6-input NAND gate. 

                                                           
1 This familiar convention is referred to as active-high. In practice, the active-low convention is sometimes used 
where a 1 means “off” and a 0 means “on”. 
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1.4 Digital Circuits 

A digital circuit is just the connections of a bunch of these logic gates together. There are certain rules, 
however, that one must follow in making these connections. The output of a gate is always connected to the input of 
one or more gates unless it is a primary output. However, the outputs from two or more gates cannot be connected to 
the same input of a gate. Primary inputs from the external world are always connected to the inputs of various gates. 
The outputs that are not connected to the inputs of other gates are the primary outputs from the circuit to the external 
world. Figure 6 shows some very simple digital circuits. 

 

x
y
z f

 

(a) 

x
y
z

f

 

(b) 
  

y
z f

 

(c) 

x
y

z f
 

(d) 

Figure 6: Sample digital circuits: (a) combinational circuit; (b) combinational circuit with one output connected to 
two inputs; (c) sequential circuit; (d) invalid circuit with two outputs connected to the same input.  

In Figure 6 (a), the circuit has three primary inputs, x, y and z, from the external world, i.e., the user supplies 
either a 0 or a 1 to each of these three inputs. x and y are connected to the inputs of the AND gate, and z is connected 
to one input of the OR gate. The output of the AND gate is connected to the second input of the OR gate. Finally the 
primary output of the circuit is f which is from the output of the OR gate. 

The circuit in Figure 6 (b) shows an example of where the output of one gate is connected to the inputs of two 
different gates. Like the circuit in Figure 6 (a) this circuit also has three inputs, x, y and z, and one output f. 
However, in this circuit, the output of the AND gate is connected to both the OR gate and the XOR gate. This 
connection point is circled in blue. 

The circuit in Figure 6 (c) is very similar to the circuit in Figure 6 (a). The one main difference, besides having 
only two inputs, is that the output from the OR gate is connected back to the input of the AND gate. Keep this very 
important point in mind! 

Finally, the circuit in Figure 6 (d) will produce errors because both the AND gate output and the NOT gate 
output are connected to the same input of the OR gate. This invalid connection point is circled in blue. Think about 
what happens if the AND gate outputs a 1 and the NOT gate outputs a 0? Since a 1 is like Vcc, and 0 is like ground, 
by connecting them together, you are creating a short circuit between power and ground! 

1.5 Identifying Combinational Circuits 

Before learning to design combinational circuits, we should be able to determine whether a given digital circuit 
is a combinational circuit or not. And if it is a combinational circuit, then we want to be able to describe its 
operation. 

Looking back at the three simple digital circuits in Figure 6, remember the main difference between circuits (a) 
and (b), and circuit (c)? To reiterate, for both of the circuits in Figure 6 (a) and (b), the signals flow in one general 
direction from the primary inputs on the left side to the primary output on the right side. However, in Figure 6 (c), 
not only is the output from the AND gate connected to the input of the OR gate, but the output from the OR gate is 
connected back to the input of the AND gate, thus, creating a feedback loop. Another way to identify this feedback 
loop is that the output of a gate is connected back to one of its own input either directly or indirectly via other gates. 
The first two circuits are combinational circuits because of the absence of a feedback loop. The circuit in Figure 6 
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(c), because of the feedback loop, makes it a sequential circuit. Be careful, however, that in larger sequential 
circuits, the feedback loop can go through many gates, and not just two as shown in the example in Figure 6 (c). 
There might be one or more feedback loops within a circuit, but as long as there is at least one loop, the circuit is a 
sequential circuit. This is the only distinction between a combinational circuit and a sequential circuit. Hence, it is 
very easy to tell whether a given digital circuit is a combinational circuit or not. 

1.6 Analysis of Combinational Circuits 

Analyzing a circuit means to determine its functional operation. So in analyzing a combinational circuit, we are 
given a combinational circuit and we want to find out how it operates. A truth table (which is simply a two-
dimensional array) is used to formally describe the functional operation of a combinational circuit. You have already 
seen some sample truth tables in Figure 3 and Figure 4. So basically what we want to do is to derive the truth table 
for a given combinational circuit. 

As an example, let us analyze the combinational circuit in Figure 6 (a). The first step in the analysis process is 
to set up the truth table for it. First, we list all of the primary inputs found in the circuit, one input per column, 
followed by all of the primary outputs found in the circuit, again one output per column. These columns are labeled 
with the names of the inputs and outputs. Since the circuit has three input variables, x, y and z, and one output 
variable, f, therefore we get a table having four columns as shown in Figure 7 (a). Second, we enumerate all possible 
combinations of 0’s and 1’s for all of the input variables. For three variables, we will have 23 = 8 different 
combinations. In general, for a circuit with n input variables, there will be 2n combinations going from 0 to 2n – 1. 
We will insert a row for each combination into the table. Figure 7 (b) shows the eight rows with the eight sets of 
input values in order. 

 

 
 
 

(a) 

x y z f 
    
    
    

 
(b) 

x y z f 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

x
y
z f

0
0

0

0
0

 
 
 
 
 

(c) 
 

(d) 

x y z f 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Figure 7: Deriving a truth table for a combinational circuit: (a) Step one–create a column for each input and output; 
(b) Step two–enumerate all possible combinations of 0’s and 1’s for the inputs; (c) Step three–for each set of input 
values, trace through the circuit to determine the output value. Circuit is annotated with the first set of input values; 
(d) the completed truth table. 

The third and final step is to fill in the values for the output column(s). For each row in the table (that is, for 
each set of input values), we need to determine what the output value is. This is done by first substituting each set of 
input values into the circuit’s primary inputs. Knowing the primary input values, we can determine for each gate in 
the circuit what its output ought to be starting from the primary inputs and tracing through the circuit to the final 
output. For example, using xyz = 000 (i.e., x = 0, y = 0 and z = 0), the two inputs to the AND gate are both 0. Hence 
the output of the AND gate will be 0, since from the AND gate truth table, 0 AND 0 is 0. This 0 from the output of 
the AND gate goes to one input of the OR gate, and the other input to the OR gate is also a 0 (from z = 0). Looking 
at the OR gate truth table, we get 0 OR 0 equals a 0. Hence, the output of the OR gate at f, which is also the primary 
output for the circuit is 0. Therefore, for the set of input values xyz = 000, the circuit output f is 0. This tracing 
process is shown in the annotated circuit in Figure 7 (c). 

Continuing on for the next set of input values where xyz = 001, the output of the AND gate is again 0. However, 
with z being a 1 going into the OR gate, the output of the OR gate will be a 1. Therefore, f is a 1 for this second set 
of inputs. Repeat this tracing process for the rest of the combinations and you will have a completed truth table for 
the circuit. To help speed up the process, notice that when input z is a 1, the output of the OR gate will always be a 1 
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regardless of the other inputs. Therefore, when z is a 1, it doesn’t matter what x and y are, f will always be a 1. By 
reasoning this way, you can more quickly determine many of the output values. 

As an exercise, you may want to derive the truth table for the circuit in Figure 6 (b), and compare your results 
with the answer shown in Figure 8. For convenience, the circuit is repeated here. 

x
y
z

f

 

 

x y z f 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Figure 8: The circuit from Figure 6 (b) and the truth table for it. 
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2 Labs 
The following labs will teach you how to design and implement combinational circuits. Many of these circuits 

are standard components used in microprocessor circuits. They will be used in our Microprocessor Trainer where 
you will actually design and implement your very own custom real working microprocessor! 
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2.1 Lab 1: Basic Gates, Lights, Action! 

Purpose 

In this lab you will first learn how to implement combinational logic circuits using the Combinational Logic 
Trainer by connecting the basic logic gates and I/Os correctly from a given circuit. You will use the trainer to 
confirm the operations of the AND, OR, NOT and XOR gates. Finally, you will learn to derive the truth table for 
any combinational circuits. 

Introduction  

The AND, OR and NOT gates are the basic building blocks for building any digital logic circuits. The 
Combinational Logic Trainer that you have contains all of the necessary tools for you to implement almost any 
combinational logic circuit. The logic gates and I/O’s are pre-mounted for easy wiring of the circuit. The layout of 
the trainer is shown in Figure 9. All logic gate inputs are connected to one wire connection point, and all logic gate 
outputs have multiple wire connection points. To connect from the output of a logic gate to the input of another logic 
gate, simply use a hook-up wire to connect between the two wire connection points. For example, switch SW7 has 

Combinational Logic Trainer
GST - DL - 010

NOT AND-4

Bread Board
EXP-350

Solar Cell
OR-2 XOR-2

a

b

c

d

e

f g PB0

OR-4

GLOBAL SPECIALTIES

VCC GND

AND-2

LED0LED1LED2LED3LED4LED5LED6LED7

SW0SW6 SW1SW2SW3SW4SW5SW7

 
 
Figure 9: Combinational Logic Trainer layout. All of the logic gates and I/O’s are pre-mounted with wire 
connection points connected to them. 
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eight common wire connection points, so to use SW7 one can connect a wire to any one of these eight connection 
points. 

All of the eight LEDs are active high, which means that a logic one will turn the light on, and a logic zero will 
turn the light off. The push button PB0 is also active high, so pressing the button will produce a logic one. All of the 
eight switches are configured so that when the switch is in the up position the output is a logic one, and when the 
switch is in the down position the output is a logic zero. 

Experiments 

1. The three thick blue lines in Figure 9 show three wires connected from SW4 and SW5 to the inputs of a two-
input AND gate, and the output of the AND gate is connected to LED4. Using three pieces of wire, make these 
same connections now on your trainer. Slide the two switches up and down and record the output on LED4 for 
all combinations of the input switches in the blank truth table provided at the end of this lab. Verify that they 
match the AND logic truth table shown in Figure 3 (a). 

 
x y F 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

(a) 

x y F 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

(b) 

x F 
0 1 
1 0 

 

(c) 
 

(d) 

x y F 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure 10: Truth tables for the four basic logical operators: (a) AND; (b) OR; (c) NOT; (d) XOR. 

2. After you have confirmed that the AND gate do work according to the truth table, repeat the experiment with 
the 2-input OR gate, the NOT gate, and the 2-input XOR gate. Slide the two switches up and down and record 
the LED output for all combinations of the input switches in the blank truth tables provided. Verify that they 
match the corresponding truth tables in Figure 3 and Figure 4. 

3. Repeat the experiment with the 4-input AND gate and the 4-input OR gate. Record your results in the blank 
truth tables provided. 

4. Design and implement a circuit that operates exactly like a 6-input AND gate. You will need to use one 4-input 
AND gate and two 2-input AND gates. Determine its operation by recording the LED output for all 
combinations of the input switches in a truth table. 

5. Design and implement a circuit that operates exactly like a 6-input OR gate. You will need to use one 4-input 
OR gate and two 2-input OR gates. Determine its operation by recording the LED output for all combinations of 
the input switches in a truth table. 

6. Another frequently use gate is the NAND gate. This gate operates exactly like an AND gate with its output 
connected to a NOT gate. Implement this circuit by using a 2-input AND gate followed by a NOT gate. Connect 
the two inputs of the AND gate to two switches, the output of the AND gate to the input of the NOT gate, and 
finally the output of the NOT gate to an LED. Determine its operation by recording the LED output for all 
combinations of the input switches in the blank truth table provided. Verify that it matches the truth table in 
Figure 4 (a). 

7. Another frequently use gate is the NOR gate. This gate operates exactly like an OR gate with its output 
connected to a NOT gate. Implement this circuit by using a 2-input OR gate followed by a NOT gate. Connect 
the two inputs of the OR gate to two switches, the output of the OR gate to the input of the NOT gate, and 
finally the output of the NOT gate to an LED. Determine its operation by recording the LED output for all 
combinations of the input switches in the blank truth table provided. Verify that it matches the truth table in 
Figure 4 (b). 

8. Implement the circuit in Figure 6 (a) and verify that it operates according to the truth table in Figure 7 (d). 

9. Implement the circuit in Figure 6 (b) and verify that it operates according to the truth table in Figure 8. 
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10. Implement the following circuit and determine its operation by filling out the truth table for it. Connect the three 
inputs, x, y and z, to three switches, and connect the output f to an LED. 

x y z

f
 

11. Implement the following circuit and determine its operation by filling out the truth table for it. Notice that this 
circuit uses a 3-input AND gate and a 3-input OR gate, both of which the trainer does not have. Instead, you can 
use a 4-input AND gate and a 4-input OR gate respectively. In order for the 4-input AND gate to work like a 3-
input AND gate, connect the extra input to VCC. In order for the 4-input OR gate to work like a 3-input OR 
gate, connect the extra input to GND. Connect the three inputs, x, y, and z, to three switches, and connect the 
output f to an LED. 

x y z

f

 
 

12. For experiment 11, what happens if you connect the extra input of the 4-input AND gate to GND instead of 
VCC? What happens if you connect the extra input of the 4-input OR gate to VCC instead of GND? 

13. Implement the following circuit and determine its operation by filling out the truth table for it. 

x y z

f

g  

14. Implement the circuit in Figure 6 (d) and determine its operation by deriving the truth table for it. Is there 
anything wrong with the results? 
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Truth Tables for Reporting Results 
 

x y F 
0 0  
0 1  
1 0  
1 1  

2-input AND gate 
 

x y F 
0 0  
0 1  
1 0  
1 1  

2-input OR gate 
 

x F 
0  
1  

 

NOT gate 
 

 
2-input XOR gate 

 

x y F 
0 0  
0 1  
1 0  
1 1  

    

 
4-input AND gate 

w x y z F 
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

 
4-input OR gate 

 
 

w x y z F 
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

 
2-input NAND gate 

 
 

2-input NOR gate 

x y F 
0 0  
0 1  
1 0  
1 1  

x y F 
0 0  
0 1  
1 0  
1 1  

 
Experiment 8 

x y z f 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

    

 
Experiment 9 

x y z f 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

 
Experiment 10 

x y z f 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

 
Experiment 11 

x y z f 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

 
Experiment 13 

x y z f g 
0 0 0   
0 0 1   
0 1 0   
0 1 1   
1 0 0   
1 0 1   
1 1 0   
1 1 1   
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2.2 Lab 2: Designing Combinational Circuits 

Purpose 

In this lab you will learn how to design combinational circuits from any given truth table and implement them 
on the trainer. 

Introduction 

As you saw in Lab 1, the operation of any combinational circuit can be described formally by a truth table. 
Moreover, any given truth table can be implemented with a digital circuit. In fact, any truth table can be 
implemented with one or more different but functionally equivalent digital circuit. A digital circuit that implements 
a truth table is always a combinational circuit. The design process begins with an informal description of the circuit 
that you want. This informal description is translated into a precise and formal description of the circuit in the form 
of a truth table. Given a truth table, you can easily construct a combinational circuit for it. Hence, the circuit will 
operate according to the specifications in the truth table. 

As an example, we begin with an informal description of a car security system that we would like to implement. 
This simple car security system consists of a master switch (M) for turning on and off the system, a door switch (D) 
for detecting whether the car door is open or close, a vibration sensor (V) for detecting movements of the car, and a 
siren (S) for sounding the alarm. Given these input and output parameters, I assume that you are at least slightly 
acquainted with the functional operations of a security system so that you can precisely describe its operation using 
a truth table. 

First, you layout your truth table with the column labels being the inputs and output signals. Next, using binary 
numbers, you enumerate all possible input values; creating one row per value. You should have the table shown in 
Figure 11 (a) but without the values in the S column. Interpreting a 1 being “on” and a 0 being “off”, determine for 
each row (i.e., each combination of input values) what the corresponding output ought to be (i.e., whether the siren S 
should be turned on or off). For example, in the first row where M=0, D=0, and V=0, this means that the system is 
off, so regardless of the state of the door switch or the vibration sensor, the siren should be off. Hence the output S is 
0 for this row. In the row where M=1, D=0, and V=0, this means that the system is on, but since the door is closed 
(D=0) and there is no vibration (V=0), the siren should also be off. Hence the output S for this row is also 0. 
Continuing with this reasoning, you should be able to complete the table and obtain the complete truth table as 
shown in Figure 11 (a). 
 

(a) 

M D V S 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

S

M D V

 

(b) 

 
 
 
 
 

D

M
V S

 

 

(c) 

Figure 11: Car security system: (a) truth table; (b) circuit diagram derived from the truth table; (c) simplified circuit 
diagram. 

Obtaining a circuit from a truth table is fairly straight forward. For each row where the output (S) is a 1, you use 
the AND operation to AND the input values together. Where the input value is a 1, you connect that input directly to 
an input of the AND gate. Where the input value is a 0, you connect the negated input (through the NOT gate) to an 
input of the AND gate. Finally, the outputs of all the AND gates are connected to the inputs of an OR gate to 
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produce the primary output signal. Hence from the truth table in Figure 11 (a), you should obtain the circuit in 
Figure 11 (b). This circuit will operate exactly according to the truth table. 

In practice, we usually want to make the circuit as small as possible but still operates exactly the same. Using 
logical reasoning and looking at the truth table in Figure 11 (a) more carefully, you might notice that the siren 
should be turned on (S=1) only when the master switch is on (M=1), and either the door is opened (D=1) or there is 
vibration (V=1). In other words, you want S to be 1 only when M=1 and either D=1 or V=1 (or both D and V are 
1’s). Writing this out as a Boolean equation, we get 

S = M AND (D OR V) 

In textbooks, you might see this equation2 written as 

S = M (D + V) 

This equation gives rise to the simplified circuit shown in Figure 11 (c). The two circuits in Figure 11 are 
functionally equivalent, i.e., they satisfy the same truth table. 

Experiments 

1. Implement the two circuits in Figure 11 (b) and (c), and verify that both of them operate according to the truth 
table in Figure 11 (a). Connect the three inputs, M, D, and V, to three switches, and connect the output S to an 
LED. 

2. Design and implement the circuit for the 2-input XOR gate without using the XOR gate. 

3. Design and implement the circuit for the following truth table where x, y, and z are the inputs, and f is the 
output. See Experiment 5 in Lab 1 on how to construct a 6-input OR gate.  

 
x y z f 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 

4. Design and implement the circuit for the following truth table where x, y, and z are the inputs, and f is the 
output. 

 
x y z f 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

                                                           
2 For an in-depth discussion on Boolean equations, refer to the book “Digital Logic and Microprocessor Design with 
VHDL” by E. Hwang. 
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5. Notice that the outputs for Experiment 4 are just the inverse of those from Experiment 3, i.e., all the 0’s and 1’s 
are flipped. In other words, if you implement a circuit by selecting the rows where the output f is a 0 instead of a 
1, you will end up with the inverse of f. Also notice that the circuit for Experiment 4 is much smaller than the 
circuit for Experiment 3. So a better way to implement the truth table for Experiment 3 is to start with the circuit 
for Experiment 4, and simply add a NOT gate to the output to invert the result. Implement this new circuit and 
verify that it operates exactly the same as the circuit from Experiment 3, i.e., both circuits produce the same 
truth table. 

6. Design and implement the circuit for the following truth table where x, y, and bin are the inputs, and bout and d 
are the outputs. 

x y bin bout d 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 
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2.3 Lab 3: Multiplexers 

Purpose 

In this lab you will learn about multiplexers. A multiplexer is used to channel data from multiple sources to one 
destination. You will design multiplexer circuits and implement them on the trainer. 

Introduction 

Multiplexers, also known as mux, are a frequently used component in a digital circuit. They are used to pass 
data from multiple sources to one destination. An analogy of its operation is like a railroad switch where two rail 
tracks are merged into one track. Depending on the switch setting, trains from either one of the two tracks are 
directed onto the one track. The logic symbol for a 2-to-1 mux is shown in Figure 12 (a). It has two inputs labeled d0 
and d1, and one output labeled y. Instead of passing trains, data is passed from either input d0 or d1 to the output y 
depending on the select line s. If the value of s is 0 then the data from input d0 is passed to the output, and if the 
value of s is 1 then the data from input d1 is passed to the output. The simplified circuit for the 2-to-1 mux is shown 
in Figure 12 (b). The truth table and the equation3 are shown in Figure 12 (c) and (d). 

 

d1 d0s
y

 

(a) 
 

s

d0

d1

y

 

(b) 
 

s d1 d0 y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

(c) 

y = s'd1'd0 + s'd1d0 + sd1d0' + sd1d0 
 = s'd0(d1' + d1) + sd1(d0' + d0) 
 = s'd0 + sd1 

 

(d) 

Figure 12: A 2-to-1 multiplexer: (a) logic symbol; (b) circuit; (c) truth table; (d) equation. 

Experiments 

1. Implement the simplified 2-to-1 mux circuit as shown in Figure 12 (b), and confirm that it operates according to 
the truth table shown in Figure 12 (c). Connect the three inputs, s, d1, and d0, to three switches, and connect the 
output y to an LED. 

2. Design the 2-to-1 mux circuit based on the truth table shown in Figure 12 (c) and without any simplifications. 
Implement your circuit and confirm that it operates according to the truth table. 

                                                           
3 For an in-depth discussion on how to simplify Boolean equations and circuits, refer to the book “Digital Logic and 
Microprocessor Design with VHDL” by E. Hwang. 
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3. A larger size mux is a 4-to-1 mux where there are four data inputs, d3, d2, d1, and d0. In order to select one of the 
four data inputs, two select lines, s1, and s0, are needed. When s1s0 = 00, data from d0 is passed to the output; 
when s1s0 = 01, data from d1 is passed to the output; when s1s0 = 10, data from d2 is passed to the output; and 
When s1s0 = 11, data from d3 is passed to the output. Design a 4-to-1 mux circuit. Implement your circuit and 
confirm that it works correctly. 

4. Design and implement an 8-to-1 multiplexer. There should be 8 data input lines, 3 select lines and 1 output line. 
Since there are only 8 switches on the trainer, you can connect the three select lines directly to either VCC (for 
1) or GND (for 0). 
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2.4 Lab 4: Decoders 

Purpose 

In this lab you will learn about decoders. A decoder is used to select one among several devices or memory 
locations. You will design decoder and encoder circuits and implement them on the trainer. 

Introduction 

A decoder is another frequently used component in a digital circuit. The function of the decoder is to select one 
thing among several things.  For example, if you have an array of 16 memory locations and you want to read from 
one particular location, a decoder will be used to select which one of the 16 memory locations that you want to 
access. The logic symbol for a 2-to-4 decoder is shown in Figure 13 (a). 

As implied by the name, 2-to-4 decoder, this component has two input lines, A1A0, which are the two address 
select lines for selecting one of the four output lines, Y3Y2Y1Y0. When the address lines A1A0=00, the output line Y0 
will be selected; when the address lines A1A0=01, the output line Y1 will be selected; when the address lines 
A1A0=10, the output line Y2 will be selected; and when the address lines A1A0=11, the output line Y3 will be selected. 
The selected output line will have a 1 value, while all of the remaining output lines will have 0’s. Given this 
description, you should now be able to derive the truth table and the circuit for a 2-to-4 decoder. The truth table and 
the circuit are shown in Figure 13 (b) and (c). 
 

2-to-4 decoder
Y1 Y0Y3 Y2

A0A1

 
 

(a) (b) 

A1 A0 Y3 Y2 Y1 Y0 
0 0 0 0 0 1 
0 1 0 0 1 0 
1 0 0 1 0 0 
1 1 1 0 0 0 

A1

A0

Y0Y1Y2Y3  
(c) 

Figure 13: A 2-to-4 decoder: (a) logic symbol; (b) truth table; (c) circuit. 

A variation of the 2-to-4 decoder has an extra enable (E) input line. When E is a 1, this decoder works exactly 
like the original. However, when the circuit is disabled with E set to 0, then it doesn’t matter what the address input 
lines are, all of the output lines will be a 0. The logic symbol, truth table, and the circuit for the 2-to-4 decoder with 
enable are shown in Figure 14. 

Figure 14: A 2-to-4 decoder with enable: (a) logic symbol; (b) truth table; (c) circuit. 

In addition to the 2-to-4 decoder, there are other sizes of decoders, namely, the 1-to-2 decoder and the 3-to-8 
decoder. Both of these can have the variation of either having or not having the enable input line. The 3-to-8 decoder 
will have three address lines and eight output lines. 

2-to-4 decoder
Y1 Y0Y3 Y2

A0A1
E

 
 

(a) (b) 

E A1 A0 Y3 Y2 Y1 Y0 
0 × × 0 0 0 0 
1 0 0 0 0 0 1 
1 0 1 0 0 1 0 
1 1 0 0 1 0 0 
1 1 1 1 0 0 0 

A1

A0

E

Y0Y1Y2Y3  
(c) 
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Experiments 

1. Implement the 2-to-4 decoder circuit as shown in Figure 13 (c), and verify that it works according to the truth 
table shown in Figure 13 (b). Connect the three inputs, E, A1, and A0, to three switches, and connect the outputs 
Y3, Y2, Y1, and Y0, to four LEDs. 

2. Implement the 2-to-4 decoder with enable circuit as shown in Figure 14 (c), and verify that it works according 
to the truth table shown in Figure 14 (b). 

3. Design and implement the 3-to-8 decoder. 

4. Design and implement the 3-to-8 decoder with enable. 
 
 
 



Combinational Logic Trainer Lab Manual   

Copyright 2009 Enoch Hwang 10/26/2009 Page 21 of 36 

2.5 Lab 5: Comparators 

Purpose 

In this lab you will learn about comparator circuits. Comparators are for comparing between two numbers to see 
if one number is less than, equal to, or greater than a second number. You will implement different comparator 
circuits and verify their operations. 

Introduction 

A comparator will output a 1 if the logical condition that it is testing for is true, and outputs a 0 if the condition 
is false. The simplest comparator is to compare whether a value is equal or not equal to a constant. The use of an 
AND gate is all that is needed for the equality comparator with a constant. For example, the circuit in Figure 15 (a) 
tests whether a 4-bit variable x is equal to the constant 3 or not. Since 3 in binary is 0011, therefore, with x3 and x2 
inverted, the AND gate will output a 1 when x is equal to 0011. For all numbers other than 3, it will output a 0.   
 

F
x0

x1

x2

x3

 
(a) 

 

F

x3y3x2y2x1y1x0y0  
(b) 

 
x3 x2 x1 x0 (x < 5) 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
1 × × × 0 

 (x < 5) = x3'x2' + x3'x2x1'x0' 

(x < 5)

x0x1x2x3

 

(c) 

Figure 15: Simple 4-bit comparators for: (a) x = 3; (b) x ≠ y; (c) x < 5. 

The XOR gate can be used for comparing inequality between two variables. Recall that the XOR gate outputs a 
1 when its two input values are different. Hence, we can use one XOR gate for comparing each bit pair of the two 
operands. A 4-bit inequality comparator is shown in Figure 15 (b). Four XOR gates are used, with each one 
comparing the same position bit from the two operands. The outputs of the XOR gates are ORed together so that if 
any bit pair is different then the two operands are different, and the resulting output is a 1. 

For the greater-than or less-than relationships, we can construct a truth table and build the circuit from it. For 
example, to compare whether a 4-bit value x is less than five, we get the truth table shown in Figure 15 (c). The first 
five rows have a 1 output since their decimal values are equal to 0 to 4 respectively. The remaining rows from 5 to 
15 will all have a 0 output. The resulting simplified circuit4 is shown in Figure 15 (c). 

                                                           
4 For an in-depth discussion on how to simplify Boolean equations and circuits, refer to the book “Digital Logic and 
Microprocessor Design with VHDL” by E. Hwang. 
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Experiments 

1. Design and implement a 4-bit comparator circuit that tests for the condition x = 7. Verify that it operates 
correctly. 

2. Design and implement a 4-bit comparator circuit that tests for the condition x ≠ 7. Verify that it operates 
correctly. 

3. Design and implement a 4-bit comparator circuit that tests for the condition x = y. Verify that it operates 
correctly. 

4. Design and implement a 4-bit comparator circuit that tests for the condition (x = 7) AND (x = 12). Verify that it 
operates correctly. 

5. Design and implement a 4-bit comparator circuit that tests for the condition (x = 7) OR (x = 12). Verify that it 
operates correctly. 

6. Design and implement a 4-bit comparator circuit that tests for the condition x ≤ 7. Verify that it operates 
correctly. 

7. Design and implement a 4-bit comparator circuit that tests for the condition x ≥ 7. Verify that it operates 
correctly. 

8. Design and implement a 4-bit comparator circuit that tests for the condition (x = 3) AND (x ≥ 7). Verify that it 
operates correctly. 
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2.6 Lab 6: Full Adder 

Purpose 

In this lab you will learn about the full adder (FA) circuit. The full adder circuit is for adding two 1-bit binary 
numbers with carry-in and carry-out. You will implement the circuit and verify its operations. 

Introduction 

The full adder circuit adds a 1-bit binary number with a second 1-bit number to produce a sum and a carry-out 
bit. The circuit also has a carry-in bit that allows it to be connected in series with other FA circuits. Consider the 
following addition of two 4-bit binary numbers 

1 0 0 1

1 100+

0011
11

cincout

 

The full adder circuit is designed to only add one bit slice of the 4-bit number, for example, the bit slice that is 
highlighted in blue. In adding this bit slice, in addition to the two input operands, there is also a carry-in bit from the 
previous bit slice. The result of the addition produces a sum bit and a carry-out bit for a carry to the next bit slice. 
The carry-in and carry-out bits allow the FA to pass bits from one bit position to the next bit position when several 
FAs are connected together in series. So in total, there are three input bits, first input operand (x), second input 
operand (y) and the carry-in (cin), and two output bits, carry-out (cout) and the sum (s). The logic symbol, truth table 
and the simplified circuit are shown in Figure 16 (a), (b) and (c) respectively. 

Figure 16: The full adder (FA): (a) logic symbol; (b) truth table; (c) simplified circuit. 

Experiments 

1. Implement the circuit shown in Figure 16 (c) and verify that it operates according to the truth table. 

2. Notice that the full adder circuit shown in Figure 16 (c) is much simplified. If you construct the circuit by 
picking out the 1’s rows in the output columns of the truth table, you will end up with a much larger circuit. 
Derive this circuit, then implement and verify that it operates according to the truth table. 

3. What should the value for cin be if all you want is to add the values of the two operands x and y? 

FA

x y

cincout

s
 

 

(a) 

x y cin cout s 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 (b) 

x y

cin

cout

s  
(c) 
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4. Derive the truth table for a full subtractor circuit following the same way that the full adder was constructed. 
You will have three inputs, x, y and bin (for borrow in), and two outputs, bout (for borrow out) and d (for 
difference). The circuit performs the subtraction x – y to give d. A 1 for bin denotes that there is a borrow from 
the bit on the right side, and a 1 for bout denotes that this current bit needs to borrow from the bit on the left. So 
in essence, you are doing x – y – bin to give d, and if you need to borrow then set bout to a 1, otherwise bout is a 0. 
Keep in mind that you are working with binary numbers, so when you borrow, you get a 2 and not a 10. The 
first two rows of the truth table are shown next. 

 
x y bin bout d 
0 0 0 0 0 
0 0 1 1 1 
0 1 0   
0 1 1   
1 0 0   
1 0 1   
1 1 0   
1 1 1   

For the second row, you have 0 – 0 – 1, and x being a 0 is not enough, so you borrow by setting bout to a 1. 
When you borrow, you get a 2, so x now has a 2; and 2 – 0 – 1 = 1, so d is also a 1. Try to complete the truth 
table on your own before looking for the answers. The complete truth table is found in Experiment 6 in Lab 2. 

5. Implement the circuit from the truth table in Experiment 4, and verify that it operates correctly. 
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2.7 Lab 7: 4-bit Adder 

Purpose 

In this lab you will learn about the 4-bit adder circuit. This 4-bit adder circuit is for adding two 4-bit binary 
numbers producing a 4-bit sum and a carry-out. You will implement the circuit and verify its operations. 

Introduction 

There are different ways to design a 4-bit adder circuit, but one very easy to understand way is to simply 
connect four full adder circuits together in series as shown in Figure 17 (b). Each box with the label FA is the full 
adder circuit from Figure 16 (c), and repeated here in Figure 17 (c) for easy reference. The carry-out (cout) signal 
from each FA is connected to the carry-in (cin) signal of the next FA on the left side. The first carry-in signal (c0) is 
connected to 0, and the final carry-out (cout) signal is the carry signal for the complete 4-bit adder circuit. The two 4-
bit operands are x and y, and the resulting 4-bit sum from the adder is s. The subscripts for x, y, and s denote the bit 
position of the 4-bit number, e.g., x0 is bit zero or the first bit of operand x, and s3 is bit three or the fourth bit of s. 
This adder circuit is called a ripple-carry adder because of how the carry signal ripples through the chain of FAs5. 
 

x3-0 y3-0

s3-0

4-bit adder

 
 
 

(a) 

x1 y1

c1

s1

FA1

x2 y2

c2

s2

FA2

x3 y3

c3

s3

FA3

cout

x0 y0

c0 = 0

s0

FA0

 
 
 

(b) 

x y

cin

cout

s  
(c) 

Figure 17: The 4-bit adder: (a) logic symbol; (b) circuit; (c) the FA circuit from Figure 16 (c). 

Experiments 

1. Implement the circuit shown in Figure 17 (b). You will need to have four FA circuits with their cin’s and cout’s 
connected together. Connect the 4-bit operand x3, x2, x1 and x0 to switches SW7 to SW4. Similarly connect the 
4-bit operand y3, y2, y1 and y0 to switches SW3 to SW0. Connect the 4-bit sum s3, s2, s1 and s0 to LED3 to LED0. 
Connect the carry-out signal (cout) to LED7. Verify that your circuit does add two 4-bit binary numbers 
correctly. The following table lists some sample numbers that you might want to try. The numbers in 
parenthesis are the corresponding decimal numbers. Note that to be absolutely certain that your circuit works 
correctly, you need to test all possible input combinations. 

 
Input Output 

Operand x Operand y Carry-out cout Sum s Observed Result 

0010 (2) 0011 (3) 0 0101 (5)  
0101 (5) 0100 (4) 0 1001 (9)  
0110 (6) 1001 (9) 0 1111 (15)  
0111 (7) 1100 (12) 1 0011 (19)  
1001 (9) 1101 (13) 1 0110 (22)  
1111 (15) 1111 (15) 1 1110 (30)  

                                                           
5 The operation of the ripple-carry adder is relatively slow. A faster adder circuit is called the carry-lookahead adder. 
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2. What happens if the initial carry-in signal c0 is connected to a 1 instead of a 0? 

3. How would you expand this 4-bit adder circuit to be an 8-bit adder circuit? 
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2.8 Lab 8: 4-bit Adder/Subtractor 

Purpose 

In this lab you will learn about a 4-bit adder/subtractor circuit. This 4-bit adder/subtractor circuit is for both 
adding and subtracting two 4-bit binary numbers producing either a 4-bit sum or difference. You will implement the 
circuit and verify its operations. 

Introduction 

It turns out that with very minimal modifications to the 4-bit adder circuit from Figure 17 (b), you can get it to 
subtract numbers as well. This simple and elegant solution is a direct result of how negative numbers are represented 
inside computers. 

Negative Numbers 

Binary numbers can be interpreted as either signed or unsigned. Unsigned numbers include only positive 
numbers and zero, whereas signed numbers include positive, negative, and zero. Given a binary number such as 
011010012, the computer does not know whether it is a signed or unsigned number. It is up to you, the designer, to 
decide how you want to interpret it. If you say that this binary number represents an unsigned number, then the 
decimal value of this number would be 

 011010012 

= (0 × 27) + (1 × 26) + (1 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20) 

= (1 × 26) + (1 × 25) + (1 × 23) + (1 × 20) 

= 64 + 32 + 8 + 1 

= 105 in decimal. 

(Notice that the power x used in 2x denotes the position of the bit in the binary number. The first bit of the binary 
number starting from the right hand side is position 0; the second bit to the left is position 1; etc.) 

If you say that this same binary number 011010012 represents a signed number, then the decimal value of this 
number would be evaluated differently. For signed numbers, the most significant bit (MSB) which is the left-most 
bit, tells whether the number is positive or negative. If the most significant bit is a 0, then the number is positive, and 
the value of this positive signed number is obtained exactly as for unsigned numbers. So if we interpret 011010012 
as a signed number, we would get the same decimal value 105. 

However, if the most significant bit of a signed number is a 1, then the number is negative, and we use what is 
referred to as the two’s complement method to determine its value. The 2’s complement6 is a method for 
representing negative or signed numbers, and it involves three steps to determine the value. In step 1, you flip all the 
1 bits in the binary number to 0’s and all the 0 bits to 1’s. In step 2, you add a 1 to the result obtained from step 1. 
Finally, for step 3, interpret the binary number obtained in step 2 as an unsigned number, and determine its value. 
The negative of this resulting value is the value of the original negative signed number. 

For example, if we say that the binary number 111010012 represents a signed number, then we would have to 
do the following to determine its value. First we note that the MSB is a 1 so we know that it is a negative number. 
To determine the value of a negative number, we perform the three steps for the 2’s complement process. 

Starting with this number:  11101001 

Step 1, flip the bits:  00010110 

Step 2, add a one to the number:  00010111 

Step 3, determine the value:  (1 × 24) + (1 × 22) + (1 × 21) + (1 × 20) 

                                                           
6 Sometimes two’s complement is also written as 2’s complement. 
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 = 16 + 4 + 2 + 1 

 = 23 

Therefore, the value for the signed number 111010012 is –23. 

To find the 2’s complement binary representation of a negative number, we start with the positive binary 
representation and then perform only the first two steps in the process. For example, to find the 2’s complement 
binary representation for –35, we start with the binary representation for +35. 

Starting with +35:  00100011 

Step 1, flip the bits:  11011100 

Step 2, add a one to the number:  11011101 

Therefore, 110111012 is the 2’s complement representation for –35. You can verify that this is indeed correct by 
performing the three step process again. 

Subtractor Circuit 

Now that we understand how negative numbers are represented, we are ready to design the subtractor circuit. 
We know from algebra that subtracting a positive number is the same as adding the negative of the number. So using 
this fact, we can use the 4-bit adder to do subtraction simply by changing the second number to its negative 
equivalent. In other words, we simply perform the first two steps (“flip the bits” and “add a 1”) in the 2’s 
complement process to convert the second number to its negative value, and then pass this negative number to the 
adder circuit. The interesting trick is that these two steps can be easily done at two different places in the circuit. 
First, we can flip the bits by using a NOT gate for every bit of the second number. Second, remember that setting c0 
to a 1 in the FA adds an extra one to the sum, and since the addition of a 1 can occur anytime during the addition 
process, therefore we can add the 1 simply by setting c0 to a 1 instead of the original 0. Hence, we obtain the 
subtractor circuit shown in Figure 18 (a). 
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Figure 18: (a) The 4-bit subtractor circuit; (b) the 4-bit adder/subtractor combination circuit. 

Adder/Subtractor Circuit 

One enhancement that we can make to the subtractor circuit is to replace the NOT gates with 2-input XOR 
gates, and connect the second input to all of the XOR gate to a common select signal s, as shown in Figure 18 (b). 
The select signal is also connected to c0. With this change, the circuit can now perform both addition and subtraction 
depending on the select signal s. When s is 0, c0 will also be 0, and with one input of the XOR gate being a 0, the bit 
at the second input will pass unchanged to the output (refer to the XOR gate truth table to see that this is so). 
Therefore, the circuit will perform an addition when s is a 0. When s is 1, c0 will be 1, and the XOR gate will flip the 
bit of its second input. Therefore, the circuit will perform a subtraction when s is a 1. In Figure 18 (b), there is an 
extra XOR gate connected to c3 and cout. The output from this XOR gate indicates whether there is an overflow or 
not for signed numbers. Whereas, the cout signal alone indicates an overflow for unsigned numbers. Notice that to 
add more bits to the adder/subtractor circuit, we simply have to daisy chain more of the FA bit slices. 
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Experiments 

1. Implement the circuit shown in Figure 18 (a). You will need to have four FA circuits with their cin’s and cout’s 
connected together. Connect the 4-bit operand a to switches SW7 to SW4. Connect the 4-bit operand b to 
switches SW3 to SW0. Connect the 4-bit result f to LED3 to LED0. Connect the carry-out signal (cout) to LED7. 
Verify that your circuit does subtract two 4-bit binary numbers correctly. The following table lists some sample 
numbers that you might want to try. The numbers in parenthesis are the corresponding decimal numbers. 

 
Input Output 

Operand x Operand y Carry-out cout Difference f Observed Result 

0111 (7) 0010 (2) 0 0101 (5)  
0101 (5) 0100 (4) 0 1001 (9)  
0110 (6) 1001 (9) 0 1111 (15)  
0111 (7) 1100 (12) 1 0011 (19)  
1001 (9) 1101 (13) 1 0110 (22)  
1111 (15) 1111 (15) 1 1110 (30)  

2. Implement the circuit shown in Figure 18 (b). You may ignore the Signed_Overflow XOR gate for now. Verify 
that your circuit does either add or subtract two 4-bit binary numbers correctly. The following table lists some 
sample numbers that you might want to try. The numbers in parenthesis are the corresponding decimal numbers. 

 
Input Output 

Operand x Operand y Carry-out cout Result f Observed Result 

0010 (2) 0011 (3) 0 0101 (5)  
0101 (5) 0100 (4) 0 1001 (9)  
0110 (6) 1001 (9) 0 1111 (15)  
0111 (7) 1100 (12) 1 0011 (19)  
1001 (9) 1101 (13) 1 0110 (22)  
1111 (15) 1111 (15) 1 1110 (30)  
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2.9 Lab 9: 2-bit Arithmetic and Logic Unit (ALU) 

Purpose 

In this lab you will learn about the Arithmetic and Logic Unit (ALU). This is the main component inside the 
microprocessor for performing simple logical and arithmetic operations. The logical operations are like those of the 
basic logic gates such as the AND, OR and NOT. The arithmetic operations are just simple additions and 
subtractions. More complex arithmetic operations such as multiply and divide are done in other dedicated 
components. You will design a 2-bit ALU, implement the circuit, and verify its operations. 

Introduction 

Like with most circuits, there are many ways of designing the ALU circuit. One method is to do something 
similar to what we did with the adder/subtractor circuit in Lab 8 by starting out with the basic layout of connecting 
several full adders (FA) together in series. And just like for the adder/subtractor circuit, we will modify the two 
operand inputs to the FA appropriately so that the FAs will produce the correct results. 

For doing additions and subtractions, we will modify the second (y) operand to the FAs doing something similar 
to the XOR gate that was used in the adder/subtractor circuit, but with some slight modifications. We will label this 
sub-circuit black box the AE for Arithmetic Extender. 

For doing logical operations, we need to do something a little more extensive. After all, you remember that the 
FAs can only add numbers, and you saw in Lab 8 how you could use the FAs to both add and subtract numbers. 
However, the FAs cannot do logical operations, so what we will need to do is to have another sub-circuit to perform 
the actual logical operations and then pass the result of the logical operations through the FAs to the output. So for 
logical operations, we do not want the FAs to modify the number that is being passed through its first (x) operand, 
and the way to do this is to have the FAs add a 0 to the number. We will label this sub-circuit black box the LE for 
Logic Extender. 

Furthermore, depending on the operation that we want to perform, the initial carry-in signal, c0, has to be set 
appropriately. In the design, this is done by the Carry Extender, CE, black box. 

Select lines are needed to tell the ALU which one of several operations to perform. If we want the ALU to be 
able to perform four operations, we will need two select lines, s1 and s0, because two bits will give four different 
combinations (00, 01, 10 and 11). Since the outputs of the LE, AE and CE are dependent on which operation we 
want to perform, therefore, the select lines are also inputs to these three boxes. 
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Figure 19: The 2-bit ALU circuit. 
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The overall circuit for the 2-bit ALU is shown in Figure 19. If you compare this circuit with the adder/subtractor 
circuit in Figure 18 (b), you will see that they are very similar except for the three added black boxes, LE, AE and 
CE. And just like with the adder/subtractor circuit, to add more bits to the ALU you simply have to add more of the 
FA bit slices. 

What we now need to do is to come up with the three circuits for the LE, AE, and the CE. The constructions of 
these circuits, of course, will be dependent on what operations we want to implement, and the way to do it is the 
same as designing any other combinational circuits. As an example, we will design an ALU that can perform four 
operations: addition, subtraction, AND, and OR. Following the steps for designing a combinational circuit as 
outlined in Lab 2, we will first come up with the truth table for each of these three circuits, and then from the truth 
tables, we can derive the circuits for them. 

We start with the operational specifications for our ALU as shown in Figure 20 (a). Note that the assignment of 
which operation is assigned to which selection combination is arbitrary. So for the combination s1s0 = 00, we will 
perform the addition of A + B. And just like for the adder/subtractor circuit, we want the first operand to the FA to 
be A and the second operand to the FA to be B, thus, the LE will output ai (the ith bit of A) and the AE will output bi 
(the ith bit of B). Recall from the adder/subtractor circuit that for addition, we want the initial carry-in c0 to be a 0, 
hence CE will output a 0. 

For the combination s1s0 = 01, we will perform the subtraction of A – B. Recall from the adder/subtractor circuit 
that for subtraction, we need to invert the second operand B and then add a 1 through the initial carry-in c0. Hence 
the AE will output bi' and the CE will output a 1. 
 

s1 s0 Operation Name Operation xi (LE) yi (AE) c0 (CE) 
0 0 Addition A + B ai bi 0 
0 1 Subtraction A – B ai bi' 1 
1 0 Logical AND A AND B ai AND bi 0 0 
1 1 Logical OR A OR B ai OR bi 0 0 

(a) 
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Figure 20: ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; (d) CE truth table. 
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For the two logical operations, the actual operation will be performed in the LE, so the LE will output the result 
of the respective logical operation. So for the combination s1s0 = 10 where the ALU will perform the logical AND 
operation, the LE will output the result of ai AND bi. Similarly, for the combination s1s0 = 11 where the ALU will 
perform the logical OR operation, the LE will output the result of ai OR bi. For all logical operations, we do not 
want the FAs to add anything, so the AE, which outputs to the second operand of the FA, should output a 0. 
Similarly, the CE should output a 0. 

So from the above analysis, we are able to come up with the three truth tables for the LE, AE and CE as shown 
in Figure 20 (b), (c) and (d) respectively. Given these three truth tables for the LE, AE and CE, you should now be 
able to derive their respective circuits. Try to first work it out  
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2.10 Lab 10: BCD to 7-segment LED Decoder 

Purpose 

In this lab you will learn how to construct a Binary-Coded-Decimal (BCD) to 7-segment LED display decoder 
circuit. This circuit converts a 4-bit binary number to cause a 7-segment LED display to show the corresponding 
decimal digit. You will implement the circuit and verify its operation. 

Introduction 

BCD is the name given for the 4-bit binary representation of the ten decimal digits. Only the first ten 
combinations of the 4-bit binary number (from 0000 to 1001) are used as shown in the first two columns (Inputs and 
Decimal Digit) of the table in Figure 21. For each one of these ten binary combinations, the corresponding decimal 
digit is to be shown on the 7-segment LED display as shown in the Display column of the table in Figure 21. 

Each LED in the 7-segment display has a letter name (from a to g) given to it as shown in the first row and last 
seven columns of the table in Figure 21. Hence, to display the decimal digit 0, we want segments a, b, c, d, e and f to 
be turned on, while segment g is turned off. Similarly, to display the decimal digit 1, we want only segments b and c 
to be turned on, while the remaining segments are turned off. Continuing on in this fashion, we obtain the rest of the 
truth table for the seven individual segments as shown in the last seven columns of the table in Figure 21. 

 The remaining six binary combinations (from 1010 to 1111) are not used in the BCD to 7-segment decoder, 
therefore, it does not matter what those values are. However, one can do a complete 4-bit to 7-segment hexadecimal 
decoder in which all of the 16 combinations of the 4-bit binary number are decoded to a hexadecimal digit. See 
Experiment 4 for the complete 4-bit to 7-segment hexadecimal LED display decoder. 
 

Inputs Decimal a b c d e f g 
i3 i2 i1 i0 Digit 

Display 
       

0 0 0 0 0  1 1 1 1 1 1 0 

0 0 0 1 1  0 1 1 0 0 0 0 

0 0 1 0 2  1 1 0 1 1 0 1 

0 0 1 1 3  1 1 1 1 0 0 1 

0 1 0 0 4  0 1 1 0 0 1 1 

0 1 0 1 5  1 0 1 1 0 1 1 

0 1 1 0 6  1 0 1 1 1 1 1 

0 1 1 1 7  1 1 1 0 0 0 0 

1 0 0 0 8  1 1 1 1 1 1 1 

1 0 0 1 9  1 1 1 0 0 1 1 

Rest of the Combinations × × × × × × × 

Figure 21: Design and truth table for the BCD to 7-segment LED decoder. The ×’s denote that the value can be 
either a 0 or a 1. 

Having completed the truth table for the decoder, we can continue with the design by drawing the circuit for 
each of the seven segments. As discussed in Lab 2, given any truth table, we can produce a circuit for it by simply 
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ANDing the inputs of a row for which the output of that row is a 1, and then ORing the outputs of all the AND gates 
together. Looking at the column in the truth table for segment a, we note that there are eight 1’s. Hence we obtain 
the following Boolean equation. 

a = i3'i2'i1'i0' + i3'i2'i1i0' + i3'i2'i1i0 + i3'i2i1'i0 + i3'i2i1i0' + i3'i2i1i0 + i3i2'i1'i0' + i3i2'i1'i0 

To implement the circuit for segment a based on this equation would require three NOT gates, eight 4-input 
AND gates and one 8-input OR gate. However, we can get a much smaller circuit by simplifying the equation. There 
are different methods for simplifying combinational circuits. One combinational circuit simplification method is the 
use of K-maps7. The K-map for simplifying the Boolean equation for segment a is shown next. 

i1i0

i3i2

00 1

00

1 1

1 1 1

1 1

01 11 10
0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

01

11

10

a

× × × ×

××

i1

i3

i2i0

i2'i0'

 
A K-map is a two dimensional array with the columns and rows labeled with all possible combinations of the 

binary value for the input variables i3, i2, i1, i0. Note that the sequence of these binary combinations is always 00, 01, 
11, and 10. The eight 1’s from the truth table are entered into the corresponding squares in the K-map. For example, 
in the truth table, there is a 1 for the input combination i3i2i1i0 = 0000. Therefore, a 1 is placed in the square that 
intersects column 00 and row 00. The ×’s are also placed in the K-map. Next, all adjacent 1’s and optional ×’s in the 
K-map are grouped together to form larger rectangles. Each × can either be considered as a 1 if it helps to make a 
larger rectangle, or it can be considered as a 0 and be ignored. The number of 1’s and ×’s in each of these rectangles 
has to be a power of 2 (i.e., 1, 2, 4, 8 or 16). This is sort of like a puzzle where you want to have as few rectangles as 
possible, and each rectangle as large as possible. Each rectangle results in one AND term, and these AND terms are 
again ORed together to produce the final simplified Boolean equation. From evaluating the above K-map for 
segment a, we obtain the following simpler equation for segment a 

    a = i3 + i1 + i2'i0' + i2i0 = i3 + i1 + (i2  i0) 

Proceeding in a similar manner, we get the following remaining six simplified equations 

    b = i2' + (i1  i0) 
    c = i2 + i1' + i0 
    d = i1i0' + i2'i0' + i2'i1 + i2i1'i0 
    e = i1i0' + i2'i0' 
    f = i3 + i2i1' + i2i0' + i1'i0' 
    g = i3 + (i2 ⊕ i1) + i1i0' 

Based on these seven simplified equations, we obtain the circuit as shown in Figure 22. 

                                                           
7 Refer to the book “Digital Logic and Microprocessor Design with VHDL” by E. Hwang for a detail discussion on 
how to use K-maps to simplify combinational circuits. 
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Figure 22: Reduced circuit for the BCD to 7-segment LED decoder. 

Experiments 

1. Implement the BCD to 7-segment LED display decoder circuit as shown in Figure 22. Connect the four inputs 
i3, i2, i1, i0 to four switches, and connect the seven outputs a, b, c, d, e, f, g to the 7-segment LED display. Verify 
that it operates correctly according to the table in Figure 21. 

2. Implement the BCD to 7-segment LED display decoder circuit based directly from the original truth table 
shown in Figure 21 and without doing any simplifications. Verify that it operates correctly according to the 
table in Figure 21. 

3. Recall from Experiment 5 of Lab 2 that you can get the same functional circuit by selecting the rows in the truth 
table where the output is a 0 instead of a 1 and then inverting the final output. By doing this, you might get a 
smaller circuit. Use this method to design the circuit for the truth table in Figure 21. Do you get a smaller circuit 
than the one in Figure 22? 

4. Instead of the BCD to 7-segment decoder where only ten of the 16 combinations are used, we can build a 
complete 4-bit to 7-segment hexadecimal LED display decoder where we decode all of the 16 combinations of 
the 4-bit binary number. Figure 23 shows the initial design table. Complete the design of this 4-bit to 7-segment 
hexadecimal LED display decoder circuit and implement it. 
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Inputs Decimal a b c d e f g 
i3 i2 i1 i0 Digit 

Display
       

0 0 0 0 0  1 1 1 1 1 1 0 

0 0 0 1 1  0 1 1 0 0 0 0 

0 0 1 0 2  1 1 0 1 1 0 1 

0 0 1 1 3  1 1 1 1 0 0 1 

0 1 0 0 4  0 1 1 0 0 1 1 

0 1 0 1 5  1 0 1 1 0 1 1 

0 1 1 0 6  1 0 1 1 1 1 1 

0 1 1 1 7  1 1 1 0 0 0 0 

1 0 0 0 8  1 1 1 1 1 1 1 

1 0 0 1 9  1 1 1 0 0 1 1 

1 0 1 0 A  1 1 1 0 1 1 1 

1 0 1 1 B  0 0 1 1 1 1 1 

1 1 0 0 C  1 0 0 1 1 1 0 

1 1 0 1 D  0 1 1 1 1 0 1 

1 1 1 0 E  1 0 0 1 1 1 1 

1 1 1 1 F  1 0 0 0 1 1 1 

Figure 23: Design of the 4-bit to 7-segment hexadecimal LED display decoder. 

 
 
 


